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1. INTRODUCTION

It has long been recognised that classical plate theory must be modi"ed to include certain
higher order e!ects like warping of the normal "bre. The "rst generation of the classical
theories was given by Reissner [1], BolleH [2] and Mindlin [3]. Since then, there have been
many further generalisations given by Naghdi [4], Essenberg [5], Nelson et al. [6], Reissner
[7,8]. Perhaps the "rst general higher order theory resulting in 11 second order partial
equations was given by Lo et al. [9,10]. In Lo's theory, the use of polynomial development
leads to coupling in the matrices in the "nite element formulation.

Hassis [11, 12] proposed, for plates and shells, a warping model based on developing the
displacement using the normal modes of a geometrical beam associated with the normal
"bre. Good estimation of the in-plane stresses, in-plane and out-of-plane displacements was
observed. For the warping theory, the use of a development using the normal modes of the
displacement leads to an uncoupled formulation; this is due to the orthogonality of the
modes.

To complement the theoretical formulation of the warping theory [11, 12], a "nite
element formulation is presented here. The formulation is presented for homogeneous
composite plates and for multilayered composite plates. It is shown that for homogeneous
composite plates, the warping theory uses the same elementary sub-matrices which are used
by the Mindlin theory.

2. FINITE ELEMENT FORMULATION

The warping theory developed in references [11,12] is summarized in Appendix A. The
standard "nite element technique is followed here. The total solution domain is discretised
into NE sub-domains (elements) such that
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where ; and ;e are the total internal strain energy of the system and the element
respectively. The vector d of unknown displacement variable is de"ned by
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The constitutive equations for the ¸th layer can be written, in material co-ordinates (x, y), as
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The stress and strain vectors have "ve components and are ordered as follows:
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The constitutive equations for the nth layer can be written, in used co-ordinates (x1, x2), as
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C1 u are the in-plane components of the matrix C1 and C1 ou are the interaction of the in- and
the out-of-plane components of the matrix C1 . Using the stress resultants de"nition, the
internal strain energy of an element due to extension, bending, warping and shear can be
written as
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The matrices used in equation (6) are de"ned as follows:
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The generalised deformation parameters used in equation (6) are de"ned by

[e0]"[L
E
]d, [j]"[L

B
]d, [v]"[L

W
]d, [c0]"[L

S
]d, [cn]"[L

SW
]d

with

[L
E
]"

L
Lx1

0 0 0 0 0 0

0
L

Lx2
0 0 0 0 0

L
Lx1

L
Lx2

0 0 0 0 0

, [L
B
]"

0 0
L

Lx1
0 0 0 0

0 0 0
L

Lx2
0 0 0

0 0
L

Lx1

L
Lx2

0 0 0

,

[L
W
]"

0 0 0 0 0
L

Lx1
0

0 0 0 0 0 0
L

Lx2

0 0 0 0 0
L

Lx1

L
Lx2

,

[L
S
]"

0 0 1 0
L

Lx1
0 0

0 0 0 1
L

Lx2
0 0

, [L
SW

]"
0 0 0 0 0 1 0

0 0 0 0 0 0 1
,

[A
e
]"P

h@2

~h@2

[C1 u] dx3, [A
ef

]"P
h@2

~h@2

x3[C1 u] dx3, [A
f
]"P

h@2

~h@2

(x3)2[C1 u] dx3,

[An
ew

]"P
h@2

~h@2

/
n
[C1 u] dx3, [An

fw
]"P

h@2

~h@2

/
n
x3[C1 u] dx3, [An

w
]"P

h@2

~h@2

(/
n
)2[C1 u] dx3,

[A
s
]"P

h@2

~h@2

[C1 ou] dx3, [An
sw

]"P
h@2

~h@2

/
n,3

[C1 ou] dx3, [An
ww

]"P
h@2

~h@2

(/
n,3

)2[C1 ou] dx3.

Using an interpolation function associated with nodes, equation (6) can be transformed into
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where Ke is the sti!ness matrix for an element e (Ke includes extension, bending, warping
and transverse shear e!ects) and a is the nodes displacement parameter.

For homogeneous plate, the matrix Q is reduced to
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where A
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If the same interpolation is adopted for the rotations (b
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The coe$cients used here are de"ned by [11, 12]
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Finally, the matrix Q becomes
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The mass matrix for homogeneous composite plate takes the following form:
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where M
e

is the Mindlin's sub-mass matrix associated with the extension, M
fr

is the
Mindlin's sub-mass matrix associated with the rotational e!ect, M

fd
is the Mindlin's

sub-mass matrix associated with the de#ection.

3. CONCLUSION

Finite element formulation is presented here for a Mindlin-warping model for plates. The
sti!ness and mass matrices are developed for homogeneous and multilayered composite
plates. It is shown that for homogeneous plates, the sti!ness matrix associated to the
warping theory used the sub-matrices (multiplied by a coe$cient) of the Mindlin theory.
For numerical implementation, it is commercially attractive due to the case of use in
software development and implementation in an existing general purpose program which is
usually based on Mindlin theory.
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APPENDIX A

A.1. DISPLACEMENT FIELD

By neglecting the p33 e!ect, the warping theory uses the assumption of the displacement
"eld in the following form:
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where (x1, x2) are the middle plane co-ordinates and x3 is the normal co-ordinate to the
middle plane (u
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) are the displacement components of the middle plane, (;
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are the displacement components of a point of the plate. M/
n
N denotes the nth transverse

mode inducing deformations of the normal "bre which is considered as a geometrical beam.

A.2. EQUATION OF MOTION

For a plate, the governing equilibrium equations are given by
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where o is the mass density, h is the thickness of the plate, f a is the ath component of the
inplane force vector, ma is the ath component of the in-plane moment vector and f a

n
is the
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ath component of the projection of the in-plane force vector on the nth transverse normal
mode.

The boundary conditions are given by
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The stress resultants using in equilibrium equations are de"ned as
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